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(g − 2)µ recap

(g − 2)µ: discrepancy between exp vs theory (& 3σ)
hadronic contributions dominate the error

aµ = α

π

∫
ds

s
K(s,mµ) ImΠ(s)

π
[Brodsky, de Rafael ’68]

analyticity Π̂(s) = Π(s)−Π(0) = s

π

∫ ∞
4m2

π

dx
ImΠ(x)

x(x− s− iε)

unitarity

=
∑

X
Im X

2 4π2α

s

ImΠ(s)
π

= σe+e−→γ?→had

At present O(30) channels: π0γ, π+π−, 3π, 4π,K+K−, · · ·
ππ channel is ∼ 70% of signal and ∼ 70% of error
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Motivations for τ
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τ data can improve aµ[ππ]
→ 72% of total Hadronic LO
or aeeµ 6= aτ → NP [Cirigliano et al ’18]
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Isospin Corrections
Restriction to e+e− → π+π− and τ− → π−π0 ντ

v0(s) = s

4πα2σπ+π−(γ)(s)

v−(s) = m2
τ

6|Vud|2
Bππ0

Be
1

Nππ0

dNππ0

ds

(
1− s

m2
τ

)−1(
1 + 2s

m2
τ

)−1 1
SEW

Isospin correction v0 = RIBv− RIB = FSR
GEM

β3
0 |F 0

π |2

β3
−|F−π |2

[Alemani et al. ’98]

0. SEW electro-weak radiative correct. [Marciano, Sirlin ’88][Braaten, Li ’90]

1. Final State Radiation of π+π− system [Schwinger ’89][Drees, Hikasa ’90]

2. GEM (long distance) radiative corrections in τ decays
Chiral Resonance Theory [Cirigliano et al. ’01, ’02]
Meson Dominance [Flores-Talpa et al. ’06, ’07]

3. Phase Space (β0,−) due to (mπ± −mπ0)
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Long distance QED - I
At low energies relevant degrees of freedom are mesons

Chiral Perturbation Theory [Cirigliano et al. ’01, ’02]

Meson dominance model [Flores-Talpa et al. ’06, ’07]

Corrections casted in one function v−(s)→ v−(s)GEM(s)

Real photon corrections

τ−

ντ
π0

π− τ−

ντ
π0

π− τ−

ντ
π0

π−

Virtual photon corrections

τ−

ντ
π0

π− τ−

ντ
π0

π− τ−

ντ
π0

π−

Real + virtual
→ IR divergences cancel
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Pion form factors

F 0
π (s) ∝

m2
ρ

Dρ(s)
π+

π−

ρ0γ [Gounaris, Sakurai ’68]
[Kühn, Santamaria ’90]

×
[
1 + δρω

s

Dω(s)

]
ρ0γ

π+

π−

γωρ0γ

π+

π−

ω

+ m2
X

DX(s) X = ρ′ , ρ′′

π+

π−

ρ′ , ρ′′γ

F−π (s) ∝
m2
ρ−

Dρ−(s) + (ρ′ , ρ′′)
π0

π−

ρ−
W −

Sources of IB breaking in phenomenological models
mρ0 6= mρ± , Γρ0 6= Γρ± , mπ0 6= mπ±

ρ− ω mixing δρω ' O(mu −md) +O(e2)
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Status
aHVP,LO
µ [ππ, ee] = 503.51(3.5)× 10−10 with E ∈ [2mπ, 1.8 GeV]

aHVP,LO
µ [ππ, τ ] = 531.3(3.3)× 10−10

aµ[ππ, ee]− aµ[ππ, τ ] = −12.0(2.6) [Cirigliano et al.]
aµ[ππ, ee]− aµ[ππ, τ ] = −16.1(1.8) [Davier et al. ’09]

(≈ −12 due to SEW, rest RIB)

aµ[τ ] :
{ model dependence

e+e− data more precise = abandoned

Additional ργ mixing correction [Jegerlehner, Szafron ’11]

partly accounted in mρ0 −mρ− in [Davier et al. ’09]

aµ[ππ, ee] = 385.2(1.5) with E ∈ [0.582− 0.975] GeV
aµ[ππ, τ ] = 386.0(2.4) after RIB
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Contribution to aµ

Time-momentum representation [Bernecker, Meyer, ’11]

Gγ(t) = 1
3

∑
k

∫
d~x 〈jγk (x)jγk (0)〉 → aµ = 4α2

∑
t

wtG
γ(t)

Isospin decomposition of u, d current

jγµ = i
6
(
ūγµu+ d̄γµd

)
+ i

2
(
ūγµu− d̄γµd

)
= j

(0)
µ + j

(1)
µ

Gγ00 ← 〈j
(0)
k (x)j(0)

k (0)〉 = + + + . . .

Gγ01 ← 〈j
(0)
k (x)j(1)

k (0)〉 = + . . .

Gγ11 ← 〈j
(1)
k (x)j(1)

k (0)〉 = + + . . .

Decompose aµ = a
(0,0)
µ + a

(0,1)
µ + a

(1,1)
µ
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Neutral vs Charged
i
2
(
ūγµu− d̄γµd

)
,

[
I = 1
I3 = 0

]
→ j

(1,−)
µ = i√

2

(
ūγµd) ,

[
I = 1
I3 = −1

]
Isospin 1 charged correlator GW11 = 1

3

∑
k

∫
d~x 〈j(1,+)

k (x)j(1,−)
k (0)〉

δG(1,1) ≡ Gγ11 −GW11 [MB et al.’ Latt18]

= Z4
V (4πα) (Qu −Qd)4

4

[
+

]

Gγ01 = Z4
V

(Q2
u −Q2

d)2

2 (4πα)
[

+ 2× + + . . .
]

+Z2
V

Q2
u −Q2

d

2 (mu −md)
[

2× + . . .
]

. . . = subleading diagrams currently not included
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Synergy - I

from QCD we need a 4-point function f(x, y, z, t):
known kernel with details of photons and muon line
1 pair of point sources (x, y), sum over z, t exact at sink
stochastic sampling over (x, y) (based on |x− y|)
Successfull strategy: x10 error reduction [RBC ’16]

from QCD we need a 4-point function f(x, y, z, t):
(g − 2)µ kernel + photon propagator
Similar problem → re-use HLbL point sources!
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Synergy - II

Stat. improvements from data of HLbL project [Phys.Rev.Lett. 118 (2017)]

contribution of diagrams V, S to aµ
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Last slide, then Plots!

Restriction to 2π → neglect pure I = 0 part a(0,0)
µ [π0γ, 3π , . . . ]

Lattice: ∆aµ[ππ, τ ] = 4α2
∑
t

wt ×
[
Gγ01(t) +Gγ11(t)−GW11(t)

]
Pheno: ∆aµ[ππ, τ ] =

∫ m2
τ

4m2
π

dsK(s)
[

v0(s) − v−(s)
]

Conversion to Euclidean time for direct comparison

∆aµ[ππ, τ ] = 4α2∑
t wt ×

{
1

12π2

∫
dω ω2e−ωt

[
RIB(ω2)− 1

]
v−(ω2)

}
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Lattice: Preliminary results - I
∆aµ → G01 + δG11:
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Lattice: Preliminary results - II
Study integrand in euclidean time → as important as integral

direct comparison 1. validate previous estimates of RIB
Lattice vs. EFT+Pheno 2. study neutral/charged ρ and ω properties

Preliminary lattice (full) calculation: Gγ01 + δG
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2. sub-leading 1/Nc, SU(Nf )
Under consideration:
3. finite-volume errors
4. discretization errors
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Systematic errors

aQED,conn
µ = V + 2S

FV study at coarse
a−1 ∼ 1 GeV
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empirical observation: diagrams may have largish FV errors

cancellation of FV effects in physical combinations
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Systematic Errors - II

Lattice fully inclusive
1. cut E < mτ

2. higher multiplicity channels, 4π
effects above ∼ 1.8 GeV suppressed by (muon) kernel
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→ control syst. effect of 4π

manipulate G(t) (e.g. Backus-Gilbert)

preliminary: w/o cut ∆aµ[4π] ≈ 2(1)
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Towards a comparison

Lattice contains π0π−γ states →

Re-evaluation of GEM → GπEM [in collab. with Cirigliano]

Real photon corrections

τ−

ντ
π0

π− τ−

ντ
π0

π− τ−

ντ
π0

π−

Virtual photon corrections

τ−

ντ
π0

π− τ−

ντ
π0

π− τ−

ντ
π0

π−

GπEM w/o π0π−γ FSR
v−
GπEM

w π0π−γ FSR
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Outlook

Inclusive studies:
kernels to suppress high channels

suppression of short/long distances (cutoff effects/noise)

expand τ -decay program [with M. Gonzalez-Alonso]
e.g. Kπ channel in vector-vector correlator
e.g. SU(3) breaking ππ −Kπ

Exclusive study: long term goal, proper isospin-breaking in ππ form factor

18 / 19



Conclusions

These are exciting times for (g − 2)µ:
1% goal for lattice results to be expected soon
QED+SIB crucial to reach target uncertainty

As a bi-product we get ∆aµ[τ ]:
1. first lattice calculation of ∆aµ[τ ] almost complete
2. tests/checks previous calculations

comparing v− with experiment requires GπEM

study Gγ01 alone → ρω mixing; δG(1,1) alone → ρ0 vs ρ−

3. possibly bound new physics

Thanks for your attention
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Experimental results

∆aµ(t) = 4α2
∑
t

wt

{∫
ds h(s, t)
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ργ mixing - I

Gounaris-Sakurai based on VMD model w/o EM gauge invariance
- generation of a photon mass
+ based on phase shift (proper pion rescattering behavior)
widely used: e.g. PDG estimates of mρ, Γρ

VMD model with gauge-invariance [Kroll, Lee, Zumino ’67]
at 1-loop s-dependent mass matrix [Jegerlehner, Szafron ’11]

limits of validity pion-loop? high enough energy must break down



ργ mixing - II

[Jegerlehner, Szafron ’11]

Fig. 6. a) Ratio of the full |Fπ(E)|2 in units of the same quantity omitting the mixing term together with a standard GS fit
with PDG parameters. b) The same mechanism scaled up by the branching fraction ΓV /Γ(V → ππ) for V = ω and φ. In the
ππ channel the effects for resonaces V ≠ ρ are tiny if not very close to resonance.

Fig. 7. CMD-2 data for |Fπ|2 in ρ− ω region together with Gounaris-Sakurai fit. Left before subtraction right after subtraction
of the ω.

has to be applied in the relation between the spectral functions. Final state radiation correction FSR(s) and
vacuum polarization effects we have been subtracted from all e+e−-data.

In Fig. 8 we illustrate the consequence of ρ − γ mixing. After applying the correction (for our set of
parameters, which is not far from standard GS fit parameters) the consistency of τ and e+e− data is

12

Fig. 3. The real parts and moduli of the three terms of (33), individual and added up.

Fig. 4. The phase of Fπ(E) as a function of the c.m. energy E. We compare the result of the elaborate Roy equation analysis
of Ref. [10] with the one due to the sQED pion-loop. The solution of the Roy equation depends on the normalization at a high
energy point (typically 1 GeV). In our calculation we could adjust it by varying the coupling gρππ.

9

30% correction at 1 GeV
δ1

1 in good agreement E < 800 MeV
perhaps restrict the ργ below
800 MeV?



ργ mixing-III

[1] = [Jegelehner, Szafron ’17]

modified ργ coupling
large negative ∆aµ
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Modified ργ suggests different behavior from lattice data
direct comparison with lattice not possible → hard cut at 1 GeV


